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Abstract

This paper highlights several areas where graphical techniques can be harnessed

to address the problem of measurement errors in causal inference. In particulars,

the paper discusses the control of partially observable confounders in parametric and

non parametric models and the computational problem of obtaining bias-free effect

estimates in such models.

1 Introduction

This paper discusses methods of dealing with measurement errors in the context of
graph-based causal inference. My motivation for tackling this problem was sparked by a
remarkable result that I discovered a few months ago in (Greenland and Lash, 2008),1

which I believe should open new vistas of possibilities for graphical modelers.
Consider the problem of estimating the causal effect of X on Y when a sufficient set Z

of confounders can only be measured with error (see Fig. 1), via a proxy set W . Since Z
is assumed sufficient, the causal effect is identified from measurement on X, Y , and Z, and
can be written

P (y|do(x)) =
∑

z

P (y|x, z)P (z) (1)

However, if Z is unobserved, and W is but a noisy measurement of Z, d-separation tells
us immediately that adjusting for W is inadequate, for it leaves the back-door path(s)
X ← Z → Y unblocked.2 Therefore, regardless of sample size, the effect of X on Y cannot
be estimated without bias. It turns out, however, that if we are given the conditional
probabilities P (w|z) that govern the error mechanism we can perform a modified-adjustment
for W that, in the limit of very large sample, would amount to the same thing as observing
and adjusting for Z itself, thus rendering the causal effect identifiable.

1Earlier works include Greenland and Kleinbaum (1983); Selén (1986); and Greenland (1988).
2For concise definitions and descriptions of graphical concepts such as “d-separation” and “back-door”

see Pearl, 2009, pp. 335–6, 344–5.
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Figure 1: Needed the causal effect of X on Y when Z is unobserved, and W provides a noisy
measurement of Z.

The possibility of removing bias by modified adjustment came as a surprise to me,
because, although P (w|z) is assumed given, the actual value of the confounder Z remains
uncertain for each measurement W = w, so one would expect to get either a distribution
over causal effects, or bounds thereof. Not so; we actually get a repaired point estimate of
P (y|do(x)) that is asymptotically unbiased.

This remarkable result, which I will label “effect restoration,” has powerful consequences
in practice because, when P (w|z) is not given, one can resort to a Bayesian (or bounding)
analysis and assume a prior distribution (or bounds) on the parameters of P (w|z) which
would yield a distribution (or bounds) over P (y|do(x)) (Greenland, 2007). Alternatively, if
costs permit, one can estimate P (w|z) by re-testing Z in a sampled subpopulation.3

On the surface, the possibility of correcting for measurement bias seems to undermine
the importance of accurate measurements. It suggests that as long as we know how bad our
measurements are there is no need to correct them because they can be corrected post-hoc
by analytical means. This is not so. First, although an unbiased effect estimate can be
recovered from noisy measurements, sampling variability increases substantially with error.
Second, even assuming unbounded sample size, the estimate will be biased if the postulated
P (w|z) is incorrect.4

Effect restoration can be analyzed from either a statistical or causal viewpoint. Taking
the statistical view, one may argue that, once the effect P (y|do(x)) is identified in terms of
a latent variable Z and given the estimand in (1), the problem is no longer one of causal
inference, but rather of regression analysis, whereby the regressional expression EzP (y|x, z)
need to be estimated from a noisy measurement of Z, given by W . This is indeed the
approach taken in the vast literature on measurement error (e.g., (Selén, 1986; Carroll
et al., 2006)).

The causal analytic perspective is different; it maintains that the ultimate purpose of

3In the literature on measurement errors and sensitivity analysis, this sort of exercise is normally done by
re-calibration techniques (Greenland and Lash, 2008). The latter employs a “validation study” in which Z

is measured without error in a subpopulation and used to calibrate the estimates in the main study (Selén,
1986).

4In extreme cases, wrongly postulated P (w|z) may conflict with the data, and no estimate will be obtained.
For example, if we postulate a non informative W , P (w|z) = P (w), and we find that W strongly depends
on X, a contradiction arises and no effect estimate will emerge.
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the analysis is not the statistics of X, Y , and Z, as is normally assumed in the measurement
literature, but a causal quantity P (y|do(x)) that is mapped into regression vocabulary
only when certain causal assumptions are deemed plausible. Moreover, the very idea of
modeling the error mechanism P (w|z) requires causal considerations; errors caused by noisy
measurements are fundamentally different from those caused by noisy agitators. Indeed,
the reason we seek an estimate P (w|z) as opposed to P (z|w), be it from judgment or
from pilot studies, is that we consider the former to be a more reliable and transportable
parameter than the latter. Transportability is a causal notion that is hardly touched upon
in the statistical measurement literature.

Viewed from this perspective, the measurement error literature appears to be engaged
(unwittingly) in a causal inference exercise that can benefit substantially from making
the causal framework explicit. The benefit can in fact be mutual; identifiability with
partially specified causal parameters (as in Fig. 1) is rarely discussed in the causal inference
literature (notable exceptions are (Hernán and Cole, 2009) and (Cai and Kuroki, 2008)),
while graphical models are hardly used in the measurement error literature.

In this paper we will consider the mathematical aspects of effect restoration and will
focus on asymptotic analysis. Our aims are to understand the conditions under which effect
restoration is feasible, to assess the computational problems it presents, and to identify
those features of P (w|z) and P (x, y, w) that are major contributors to measurement bias,
and those that contribute to robustness against bias.

2 Effect Restoration by Matrix Adjustment

The main idea, adapted from (Greenland and Lash, 2008, p. 360), is as follows: Starting
with the joint probability P (x, y, z, w), and assuming that W depends only on Z,5 i.e.,

P (w|x, y, z) = P (w|z) (2)

we write

P (x, y, w) =
∑

z

P (x, y, z, w)

=
∑

z

P (w|x, y, z)P (x, y, z)

=
∑

z

P (w|z)P (x, y, z)

For each x and y, we can interpret the transformation above as a vector-matrix
multiplication:

V (w) =
∑

z

M(w, z)V (z)

5This assumption goes under a rather strange rubric: “non-differential error” (Carroll et al., 2006).
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where V (w) = P (x, y, w) and M(w, z) is a stochastic matrix (i.e., the entries in each row
are non-negative and sum to one). It is well known that, under fairly broad conditions, M
has an inverse (call it I), which allows us to write:

P (x, y, z) =
∑

w

I(z, w)P (x, y, w) (3)

We are done now, because (3) enables us to reconstruct the joint distribution of X, Y ,
and Z from that of the observed variables, X, Y , and W . Thus, each term on the right
hand side of (1) can be obtained from P (x, y, w) through (3) and, assuming Z is a sufficient
set (i.e., satisfying the back-door test), P (y|do(x)) is estimable from the available data.
Explicitly, we have:

P (y|do(x)) =
∑

z P (y, z, x)P (z)/P (x, z)

=
∑

z

∑
w I(z, w)P (x, y, w)

P
xyw

I(z,w)P (x,y,w)
P

wy
I(z,w)P (x,y,w)

=
∑

z

∑
w I(z, w)P (x, y, w)

P
w

I(z,w)P (w)
P

wy
I(z,w)P (x,w)

(4)

Note that the same inverse matrix, I , appears in all summations. This will not be the
case when we do not assume independent noise mechanisms. In other words, if (2) does not
hold, we must write:

P (x, y, w) =
∑

z

P (w|x, y, z)P (x, y, z)

=
∑

z

Mxy(w, z)P (x, y, z)

where Mxy and its inverse Ixy are both indexed by the specific values of x and y, and we
then obtain:

P (x, y, z) =
∑
w

Ixy(z, w)P (x, y, w) (5)

which, again, permits the identification of the causal effect via (5) except that the expression
becomes somewhat more complicated. It is also clear that errors in the measurement of X
and Y can be absorbed into a vector W , and do not present any conceptual problem.

Equation (4) demonstrates the feasibility of effect reconstruction and proves that,
despite the uncertainty in the variables X, Y and Z, the causal effect is identifiable once we
know the statistics of the error mechanism.

This result is reassuring, but presents practical challenges of both representation,
computation and estimation. Given the potentially high dimensionality of Z and W ,
the parameterization of I would in general be impractical or prohibitive. However, if we
can assume independent local mechanisms, P (w|z) can be decomposed into a product
P (w|z) = P (w1|z1)P (w2|z2), . . . , P (wk|zk) which renders I decomposable as well. Even
when full decomposition is not plausible, sparse couplings between the different noise
mechanisms would enable parsimonious parameterization using, for example, Bayesian
networks.

The second challenge concerns the summations in Eq. (4) which, taken literally, calls
for exponentially long summation over all values of w. In practice, however, this can be
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mitigated since, for any given z, there will be only small number of w’s for which I(z, w) is
non-negligible. This computation, again, can be performed efficiently using Bayes networks
inference.

This still would not permit us to deal with the problem of empty cells which, owed
to the high dimensionality of Z and W would prevent us from getting reliable statistics
of P (x, y, w), as required by (4). One should resort therefore to propensity score (PS)
methods, which map the cells of Z onto a single scalar.

The error-free propensity score L(z) = P (X = 1|Z = z) being a functional of P (x, y, z)
can of course be estimated consistently from samples of P (x, y, w) using the transformation
(3). Explicitly, we have:

L(z) = P (X = 1|Z = z)

= P (X = 1, Z = z)/P (z)

=
∑

y

P (X = 1, y, z)/
∑
xy

P (x, y, z)

where P (x, y, z) is given in (4).
Using the decomposition in (2), we can further write:

L(z) =
∑

y

P (X = 1, y, z)/
∑
xy

P (x, y, z)

=
∑

w

I(z, w)P (X = 1, w)/
∑

w

I(z, w)P (w) (6)

=
∑

w

I(z, w)L(w)P (w)/
∑

w

I(z, w)P (w)

where L(w) is the error-prone propensity score

L(w) = P (X = 1|W = w).

We see that L(z) can be computed from I(z, w), L(w) and P (w). Thus, if we succeed
in estimating these three quantities in a parsimonious parametric form, the computation
of L(z) would be hindered only by the summations called for in (5). Once we estimate
L(w) parametrically for each conceivable w, Eq. (9) permits us to assign to each tuple z a
bias-less score L(z) that correctly represents the probability of X = 1 given Z = z. This, in
turn, should permit us to estimate, for each stratum L = l, the probability

P (l) =
∑

z|L(z)=l

P (z)

then compute the causal effect using

P (y|do(x)) =
∑

l

P (y|x, l)P (l).

One technique for approximating P (l) was proposed by Stürmer et al. (2005), which did
not make full use of the inversion in (9) or of graphical methods facilitating this inversion.
A more promising approach would be to construct P (l) and P (y|x, l) directly from synthetic
samples of P (x, y, z) that can be created to mirror the empirical samples of P (x, y, w). This
is illustrated in the next subsection, using binary variables.
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3 Effect Restoration in Binary Models

Let X, Y, Z and W be binary variables, and let the the noise mechanism be characterizes by

P (W = 0|Z = 1) = ε

P (W = 1|Z = 0) = δ

To simplify notation, let the propositions Z = 1 and Z = 0 be denoted by z1 and z0,
respectively, and the same for W = 1 and W = 0, so that ε and δ can be written

ε = P (w0|z1)

δ = P (w1|z0)

Equation (3) then translates to

P (x, y, z0) = [(1− ε)P (x, y, w0)− εP (x, y, w1)]/(1− ε− δ)

P (x, y, z1) = [−δP (x, y, w0) + (1− δ)P (x, y, w1)]/(1− ε− δ) (7)

which represents the inverse matrix

I(w, z) =

[
1− δ ε

δ 1− ε

]−1

=
1

1− ε− δ

[
1− ε −ε
−δ 1− δ

]

Metaphorically, the transformation in (7) can be described as a mass re-assignment
process, as if every two cells, (x, y, w0) and (x, y, w1), compete on how to split their
combined weight P (x, y) between the two latent cells (x, y, z0) and (x, y, z1) thus creating a
synthetic population P (x, y, z) from which (4) follows. Figure 2 describes how P (w1|x, y),
the fraction of the weight held by the (x, y, w1) cell determines the fraction P (z1|x, y)
that is eventually received by cell (x, y, z1). The complementary fraction, 1− P (z1|x, y) is
received, of course, by the twin cell (x, y, z0), as shown in Fig. 2.

Clearly, when ε + δ = 1, W provides no information about Z and the inverse does not
exist. Likewise, whenever any of the synthetic probabilities P (x, y, z) falls outside the
(0, 1) interval, a modeling constraint is violated (see Pearl (1988, Chapter 8)) meaning
that the observed distribution P (x, y, w) and the postulated error mechanism P (w|z) are
incompatible with the structure of Fig. 1 (see footnote 4). If we assign reasonable priors
to ε and δ, the linear function in Fig. 2 will become an S-shaped curve over the entire
[0, 1] interval, and each sample (x, y, w) can then be used to update the relative weight
P (x, y, z1)/P (x, y, z0).

To compute the causal effect P (y|do(x)) we need only substitute P (x, y, z) in Eq. (1),
which gives

P (y|do(x)) =
P (x, y, w1)

P (x|w1)

[
1− δ

P (w1|x,y)

][
1− δ

P (w1)

]
1− δP (x)/P (w1)

+
P (x, y, w0)

P (x|w0)

[
1− ε

P (w0|x,y)

][
1− ε

P (w0)

]
1− εP (x)/P (w0)

.

(8)
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Figure 2: A curve describing how the weight P (x, y) is distributed to cells (x, y, z1) and
(x, y, z0), as a function of P (w1|x, y).

This expression highlights the difference between the standard and modified adjustment
for W ; the former (Eq. (1)), which is valid if W = Z, is given by the standard inverse
probability weighting (e.g., Pearl, 2009, Eq. (3.11)):

P (y|do(x)) =
P (x, y, w1)

P (x|w1)
+

P (x, y, w0)

P (x|w0)

The extra factors in Eq. (8) can be viewed as modifiers of the inverse probability weight
needed for a bias-free estimate. Alternatively, these terms can be used to assess, given ε and
δ, what bias would be introduced if we ignore errors altogether and treat W as a faithful
representation of Z.

The infinitesimal approximation of (8), in the limit ε→ 0, δ → 0, reads:

P (y|do(x)) ∼=
P (x, y, w1)

P (x|w1)

[
1− δ

(
1

P (w1|x, y)
−

1− P (x)

P (w1)

)]

+
P (x, y, w0)

P (x|w0)

[
1− ε

(
1

P (w0|x, y)
−

1− P (x)

P (w0)

)]

We see that, even with two error parameters (ε and δ), and eight cells, the expression for
P (y|do(x) does not simplify to provide an intuitive understanding of the effect of ε and δ
on the estimand. Such evaluation will be facilitated in the next example.

4 Effect Restoration in Linear Models

Figure 3 depicts a linear version of the structural equation model (SEM) shown in Fig. 1.
Here, the task is to estimate the effect coefficient c0, while the parameters c3 and var(εw),
representing the noise mechanism W = c3Z + εW , are assumed given.

7
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Figure 3: (a) A linear version of the model in Fig. 1. (b) A linear model with two indicators
for Z, permitting the identification of c0.

Linear models offer two advantageous in handling measurement errors. First, they
provide a more transparent picture into the role of each factor in the model. Second, certain
aspects of the error mechanism can often be identified without resorting to external studies.
This occurs, for example, when Z possesses two independent indicators, say W and V (as
in Fig. 3(b)), in which case the product c2

3var(Z) is identifiable and is given by:

c2
3var(Z) =

cov(XW )cov(XV )

cov(WV )
. (9)

As we shall see below, this product is sufficient for identifying c0.
Equation (9) follows from Wright’s rules of path analysis and reflects the well known fact

(e.g., (Bollen, 1989, p. 224)) that, in linear models, structural parameters are identifiable
(up to a constant var(Z)) whenever each latent variable (in our case Z) has three
independent proxies (in our case X, W , and V )6

Cai and Kuroki (2008) further showed that c0 is identifiable from measurements of
three proxies (of Z), even when these proxies are dependent of each other. For example,
connecting W to X and V to Y , still permits the identification of c0. Similarly, the reader
can verify that adding an arrow from W to V in Fig. 3(b) does not hinder the identification
of c0.

To find c0 in the model of Fig. 3, we write the three structural equations in the model

Y = c2Z + c0X + εY

W = c3Z + εW

X = c1Z + εX

and express the structural parameters in terms of the variances and covariances of the

6This partial identifiability of the so called “factor loadings,” is not an impediment for the identification
of c0. However, if we were in possession of only one proxy (as in Fig. 3(a)) then knowledge of c3 alone would
be insufficient, the product c

2
3var(Z) is required.
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observed variables. This gives (after some algebra):

c0 =
cov(XY )− cov(XW )cov(WY )/c2

3var(Z)

1− cov2(XW )/c2
3var(Z)

(10)

and shows that the pivotal quantity needed for the identification of c0 is the product

c2
3var(Z) = c2

3[var(W )− var(εW )] (11)

If we are in possession of several proxies for Z, c2
3var(Z) can be estimated from the data,

as in Eq. (9), yielding:

c0 =
cov(XY )cov(XV )− cov(Y W )cov(WV ))

cov(XV )var(X)− cov(XW )cov(WV )
(12)

If however Z has only one proxy, W , as in Fig. 3(a), the product c2
3var(Z) must be

estimated externally, using either a pilot study or judgmental assessment.
The decomposition on the right hand side of Eq. (11) renders the judgmental assessment

of that product cognitively meaningful, since both c3 and εW are causal parameters of the
error mechanism

W = c3Z + εW ,

c3 = E(W |z)/z measures the slope with which the average of W tracks the value of Z,
while var(εW ) measures the dispersion of W around that average. var(W ) can, of course
be estimated from the data.

Under a Gaussian distribution assumption, c3 and var(εW ) fully characterize the
conditional density f(w|z) which, according to Section 2, is sufficient for restoring the joint
distribution of x, y, and z, and thus secure the identification of the causal effect, through
(1). This explains why the estimation of c3 alone, be it from experimental data or our
understanding of the physics behind the error process, is not sufficient for neutralizing the
confounder Z. It also explains why the technique of “latent factor” analysis (Bollen, 1989)
is sufficient for identifying causal effects, even though it fails to identify the “factor loading”
c3 separately of var(Z).

In the noiseless case, i.e., var(εW ) = 0, we have var(Z) = var(W )/c2
3 and Eq. (11)

reduces to:

c0 =
cov(XY )− cov(XW )cov(WY )/var(W )

1− cov2(XW )/var(W )
=

βyx − βywβwx

1− β2
xw

= βyx·w (13)

where βyx·w is the coefficient of x in the regression of Y on X and W , or:

βyx·w = ∂/∂xE(Y |x, w)

As expected, the equality c0 = βyx·z = βyx·w assures a bias-free estimate of c0 through
adjustment for W , instead of Z; c3 plays no role in this adjustment.

In the error-prone case, c0 can be written

c0 =
βyx − βywβwx/k

1− (βxw/k)2

9



where
k = 1− var(εW )/var(W )

and, as the formula reveals, c0 cannot be interpreted in terms of an adjustment for a
surrogate variable V (W ).

The strategy of adjusting for a surrogate variables has served as an organizing principle
for many studies in traditional measurement error analysis (Carroll et al., 2006). For
example, if one seeks to estimate the coefficient c1 = E(X|z)/z through a proxy W of Z,
one can always choose to regress X on another variable, V , such that the slope of X on V ,
E(X|v)/v, would yield an unbiased estimate of c1. In our example of Fig. 3, one should
choose V to be the best linear estimate of Z, given W , namely V = αW , where

α = Cov(ZW )/var(W ) = c3var(Z)/var(W )

is to be estimated separately, from a pilot study. However, this Two Stage Least Square
strategy is not applicable in adjusting for latent confounders; i.e., there is no variable V (W )
such that c0 = βyx·v.

5 Model Testing with Measurement Error

When variables are measured without error, a structural equation model can be tested
and diagnosed systematically by examining how well the data agrees with each statistical
constraint that the model imposes on the joint distribution (or covariance matrix). The
most common type of these constraints are conditional independence relations (or zero
partial correlations), and these can be read off the causal diagram through the d-separation
criterion (Pearl, 2009, pp. 335–7). For each missing edge in the diagram, say between
X and Y , the model dictates the conditional independence of X and Y given a set Z of
variables that d-separates X from Y in the diagram; these independencies can then be
tested individually and systematically to assure compatibility between model and data
before parameter identification commences.

When Z suffers from measurement errors (as in Fig. 1) those conditional independencies
are not testable, since the proxies of Z no longer d-separate X from Y . The question arises
whether surrogate tests exist through the available proxies, to detect possible violations of
the missing-edge postulate. The preceding section suggests such tests, provided we know
(or can estimate) the parameters of the error process.

This is seen by substituting c0 = 0 in Eq. (10), and accepting the vanishing of the
numerator as a surrogate test for d-separation between X and Y :

Theorem 1 If a latent variable Z d-separates two measured variables, X and Y , and Z has

a proxy W , W = cZ + εW , then cov(XY ) must satisfy:

cov(XY ) = cov(XW )cov(WY )/c2var(Z)

= cov(XW )cov(WY )/[var(W )− var(εW )] (14)

10



We see that the usual condition of vanishing partial regression coefficient is replaced by
a modified condition, in which c2 var(Z) needs to be estimated separately (as in Fig. 3(b)).
If the product c2var(Z) is estimated from other proxies of Z, as in Fig. 3(b), Eq. (14)
assumes the form of a TETRAD condition (Bollen, 1989, p. 304)

cov(XY ) = cov(V W )cov(WY )/cov(XV )

Cai and Kuroki (2008) derive additional conditions under which this constraint applies to
multivariate sets of confounders and proxies.

Equation (14) can also be written

cov[Y (X −Wcov(XW )]/[var(W )− var(εW )] (15)

which provides an easy test of (12), in the style of Two Stage Least Square:

1. estimate α = var(W )− var(εW ) (using a pilot study or auxiliary proxy variables)

2. collect samples Xi, Yi, Wi i = 1, 2, 3, . . . , n

3. estimate c1 = cov(XW )

4. Translate the data into fictitious samples Xi, Vi i = 1, 2, 3, . . . , n with Vi = Xi −
cov(XW )/αWi

5. Compute (by Least Square) the best fit coefficient a in Xi = aVi + ei

6. Test if a = 0. If a vanishes with sufficiently high confidence, then the data is compatible
with the d-separation condition X⊥⊥Y |Z.

Theorem 1 can be generalized to include missing edges between latent variables, as well
as between latent and observed variables. In fact, if the graph resulting from filling in a
missing edge permits the identification of the corresponding edge coefficient c, then the
original graph imposes a statistical constraint on the covariance matrix that can be used to
test the absence of that edge. Such tests should serve as model-diagnostic tools, before (or
instead) of submitting the entire model to a global test of fitness.

6 Conclusions

The paper discusses computational and representational problems connected with effect
restoration when confounders are mismeasured or misclassified. In particular, we have
explicated how measurement bias can be removed by creating synthetic samples from
empirical samples, and how inverse-probability weighting can be modified to account for
measurement error. Subsequently, we have analyzed measurement bias in linear systems
and explicated graphical conditions under which such bias can be removed.
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